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ABSTRACT

Understanding the response of plant traits towards different growing conditions is crucial 
to maximizing crop yield and mitigating the effect of the food crisis. At present, many 
imaging techniques are being explored and utilized within plant science to solve problems 
in agriculture. One of the most advanced imaging methods is hyperspectral imaging 
(HSI), as it carries the spectral and spatial information of a subject. However, in most 
plant studies that utilized HSI, the focus was given to performing an analysis of spectral 
information. Even though a satisfactory performance was achieved, there is potential for 
better performance if spatial information is given more consideration. This review paper 
(1) discusses the potential of the proximal HSI analysis methods for plant traits studies, 
(2) presents an overview of the acceptance of hyperspectral imaging technology for plant 
research, (3) presents the basic workflow of hyperspectral imaging in proximal settings 
concerning the image acquisition settings, image pre-processing, spectral normalization, 
and spectral analysis, (4) discusses the analysis methods that utilize spatial information, 
and (5) addresses some technical challenges related to implementing hyperspectral imaging 
in proximal settings for plant traits analysis.

Keywords: Deep learning, hyperspectral imaging, 
machine learning, spatial information, spectral 
information 

INTRODUCTION

Food crisis arises from extreme climates, 
such as droughts and heat waves, that might 
cause the crops to yield, unable to meet the 
supply-demand for human consumption in 
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the future. The current trends of agriculture yield that increased by 1.6%, 1.0%, 0.9%, and 
1.3% each year for maize, rice, wheat, and soybean, respectively, were still insufficient to 
meet the demand of the projected population by 2050 (Ray et al., 2013). A recent study 
reported that for each degree-Celsius increase in global mean temperature, crops like 
wheat, maize, rice, and soybean would decrease at a single-digit percentage rate (Zhao et 
al., 2017). Therefore, to boost the global crop yield, one of the solutions is to breed more 
sustainable crops that can survive through extreme biotic and abiotic stresses.

The understanding of the plant’s response to different biotic and abiotic stresses is 
known as plant phenotyping. Plant phenotyping is particularly important to support the 
decision-making in breeding higher-quality crops (Li et al., 2014). For instance, Sims and 
Gamon (2002) used measurement of the Xanthophyll-cycle pigment content, which is 
associated with spectral reflectance in the visible green region (500 nm–570 nm) in plants 
to estimate photosynthesis efficiency and, thus, could accelerate research of plant resistance 
towards stress. The discovery of such plant traits towards stress might take years due to 
the limitation of imaging sensors. Examples of traditional imaging sensors used to obtain 
plant traits were Red-Green-Blue (RGB), fluorescence, thermal, and multispectral cameras. 
Comparing these traditional imaging sensors with the promising hyperspectral (HS) 
camera, the latter captures more information in a single image. As technology advances, 
HS cameras become more accessible for research imaging purposes, leading to increased 
studies conducted using HS cameras.

HS camera has been widely used in plant phenotyping due to its capability to capture 
a wide range of spectral reflectance from samples. Technically, the spectral information 
acquired by several types of HS cameras ranges from visible light (VIS) to shortwave-
infrared (SWIR), which is a wavelength from 400 nm to 2500 nm (Salazar-vazquez & 
Mendez-vazquez, 2020). As a comparison with the conventional RGB camera, the HS 
camera provided more information for plant phenotyping as many plant traits and chemical 
interactions that happened in plants corresponded to electromagnetic waves within the 
spectrum range of near-infrared (NIR) and SWIR (Nguyen & Lee, 2006; Sims & Gamon, 
2003). In most common approaches, many vegetation indices (VI) derived within the 
NIR-SWIR wavelength region, like normalized difference vegetation index (NDVI), red 
edge normalized ratio (NR red edge), water index (WI), and moisture stress index (MSI) 
were used to determine different biophysical conditions of plants (Zhang & Zhou, 2019). 
Besides, the absorption valley of electromagnetic waves was also used to estimate the water 
content of corn leaves located between 900 nm and 1700 nm (Sun et al., 2021).

A multispectral camera is another imaging device that works similarly to the HS 
camera. However, the HS camera was more favored as the HS images carried more 
detailed information than multispectral images. The spectral signature of HS images can be 
considered a continuous spectrum as the interval between captured spectral bands was small. 
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However, this technical feature was less prominent for the multispectral images because 
the spectral bands were captured far from each other. Therefore, the spectral signature was 
considered discrete for the multispectral image. The greater spectral dimensionality of HS 
images allowed a more in-depth examination and discrimination of the plant’s responses. 
The abundant amount of information carried by HS images attracted the attention of 
researchers and has led to an increase in technical papers discussing hyperspectral imaging 
(HSI) analysis in the agriculture field compared to past decades (Lu et al., 2020).

Since HSI emerged as a promising method for plant phenotyping, the imaging 
methods can be categorized into remote sensing and proximal imaging, as Goetz (2009) 
demonstrated. Remote sensing refers to capturing a large area of objects within a single 
image. For example, the common Indiana Pines and University of Pavia datasets were 
obtained from the HSI satellite and, thus, considered remote sensing. Besides, remote 
sensing includes unmanned aerial vehicles (UAV) and aircraft, which allows a large area 
of targets to be captured simultaneously. In contrast to remote sensing, proximal imaging 
denotes the distance of 1 meter between sensors and plants (Mishra, Lohumi et al., 2020). 
Proximal HSI is usually carried out indoors in a laboratory or greenhouse area. The time 
taken for proximal HSI is longer for the whole group of samples as the sample image 
is usually taken one at a time. However, with the development of a high-throughput 
phenotyping platform (HTPP), the proximal HSI can be performed efficiently and with 
minimal human intervention. 

Mainly, the information carried by HS images can be categorized into two, which are 
spectral and spatial information (Saha & Manickavasagan, 2021; Zhang & Zhou, 2019). 
The common downsides of processing HS images are high computational cost and long 
processing duration. Therefore, numerous studies were carried out to determine the most 
efficient algorithm for the HS image. However, most studies only utilized the spectral 
information from HS images for the proximal analysis of plants. It might have wasted a large 
amount of spatial information, which could play a significant role in studying plant traits. 

This paper aims to provide insights into HSI workflow and how spatial information is 
utilized throughout the proximal HSI analysis. 

WORKFLOW OF PROXIMAL HYPERSPECTRAL IMAGING

The spectral and spatial information obtained from HS images can be redundant and 
frequently accompanied by noises. Therefore, several algorithms were developed for 
effective information extraction in different use cases, like detecting plant traits when 
experiencing water stress, disease, or lacking certain nutrients. Even though the set-up of 
imaging stations and algorithms might differ in these studies, the general technical workflow 
of proximal HSI analysis of plants was similar. The workflow can be categorized into image 
acquisition, image pre-processing, and spectral modeling. Illumination correction belongs 
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to the pre-processing stage. However, as the 
illumination effect is a major concern in HSI 
analysis, it will be discussed in more detail 
later. Figure 1 shows the flowchart of the 
general workflow of HSI analysis for better 
illustration.

Image Acquisition

The acquisi t ion of HS images was 
challenging as multiple factors needed 
to be considered before setting up the 
imaging station to ensure that the obtained 
HS images had less noise and an efficient 
acquisition process. Types of HS cameras, 
illumination sources, and acquisition 
geometry arrangement were among the 
factors.

In general, the HS cameras used to 
capture plant images can be performed in 
three separate ways, such as whiskbroom, 
pushbroom, and tunable filter, as shown 

Figure 1. Flowchart for the general workflow of 
proximal HSI analysis
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in Figure 2, in which each method has its advantages and disadvantages (Elmasry et al., 
2012). For the whiskbroom method, firstly, a grid of spatial position was predefined on 
the sample surface. Then, the camera scanned the spectrum of a single point at a time. The 
advantage of the whiskbroom method was that the illuminations for every point passed 
through the optical system similarly. However, the whiskbroom method caused spatial 
distortion in HS images, and the time taken for a complete scan was much longer than 
other methods (Stuart et al., 2019). The pushbroom method utilized a two-dimensional 
dispersing element and detector array to obtain the sample’s HS image (line by line). Due 
to their speed and versatility, the pushbroom HS cameras were commonly installed in 
conveyor-belt systems like HTPP for effective sample image acquisition (Manley et al., 
2009). Lastly, the tunable filter HS camera acquired the samples images by capturing the 
spectrum of all points according to their wavelength by using liquid crystal tunable filters 
(LCTF) or acousto-optic tunable filters (AOTF) (Gupta et al., 1999; X. Wang et al., 2018). 
No movement of either the camera or the sample was allowed throughout the process. The 
acquisition duration of the tunable filter method depended on the number of spectral bands 
concerned. Therefore, using the tunable filter method was most practical only when the 
interested spectral bands were less.
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Another important consideration during image 
acquisition was the illumination sources. The illumination 
sources can be categorized into two: passive and active 
light sources (Grönwall et al., 2016). A passive light source 
is a natural light, usually used when the image acquisition 
station is outdoors or in a greenhouse. In some passive 
light source use cases, special glass was used to filter the 
sunlight spectrum so that only interested bands were used 
for analysis. Meanwhile, the active light sources consist 
of man-made devices, such as tungsten halogen lamps, 
gas discharge tubes, xenon lamps, and the ubiquitous 
light-emitting diode (LED) lamps. When choosing an 
active light source, the set-up convenience, cost, and 
interest bandwidths need to be considered. Figure 3 shows 
the set-up of different illustration source directions. In 
plant phenotyping, halogen lamps were used as their 
illumination, which ranged from 400 nm–to 2600 nm, 
which allowed the HS image to be captured (Paulus & 
Mahlein, 2020). Table 1 lists the image acquisition criteria 
of studies relevant to proximal HS crop analysis.

Figure 2. Illustration of: (a) whiskbroom; (b) pushbroom; and (c) tunable imaging method
(a) (b) (c)

Figure 3. Illustration of image 
acquisition: (a) Side; and (b) top

(a)

(b)
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Image Pre-processing

The first HS image obtained by the camera was considered raw data that contained noises 
and pixels that were not parts of the sample. At this stage, these raw signals were heavily 
affected by spectral non-uniformities and could not be used directly for quantitative 
analysis. Therefore, pre-processing steps were required to extract clean and useful data 
for an accurate analysis. The remaining part will discuss the common steps used to obtain 
useful data from the HS image of a plant.

Once the HS image was captured, a radiometric calibration of the camera needed to 
be performed to reduce the effect of uneven illumination. The original reflectance value of 
each band will be converted to a relative reflectance value by using Equation 1.

𝑅𝑅 = 𝐼𝐼−𝐵𝐵
𝑊𝑊−𝐵𝐵

                                                                   					     (1)

Where R represents the calibrated HS image, I is the raw HS image, B is the image 
obtained when the HS camera shutter was completely covered (black reference), and 
W is the HS image of a high-reflective whiteboard (white reference). After this step, the 
relative reflectance value ranged from 0 to 1, and thus, the effect of outliers due to uneven 
illumination was reduced.

Depending on the position and the distance of the HS camera with the targeted plants, 
the captured HS image may contain background objects that were not part of the plants, such 
as soil, pot, and the imaging platform. It was important to focus only on the plant pixels for 
further analysis. Image segmentation techniques were applied to suppress the background 
pixels. In studying plant traits’ response to drought, Behmann et al. (2016) applied k-mean 
clustering to segment HS images into plant and background clusters. Plant clusters were 
defined using a normalized difference vegetation index (NDVI) with a threshold of 0.3 and 
a near-infra-red (745 nm) threshold of 0.3 for the cluster centroid. For the NDVI calculation, 
reflectance values of bands 670 nm and 800 nm, within the red visible and near infra-red 
(NIR) range, respectively, were used in the calculation using Equation 2.	

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅800−𝑅𝑅670
𝑅𝑅800 +𝑅𝑅670

             				    (2)

The values calculated after Equation 2 ranged from -1 to +1. The NDVI value must be 
at least 0.2 or above, in which a higher value represents denser vegetation to ensure that a 
pixel belongs to a plant. The NDVI value, near 0, usually indicates objects like rock, sand, 
or snow, while a negative NDVI value indicates water. 

Illumination Correction

Spectral Averaging. Spectral averaging is a straightforward illumination correction 
method (Pandey et al., 2017). It is implemented by averaging the spectral signature of 
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all pixels that belong to a plant in an HS image. The average spectrum lost all the spatial 
information, which could be useful for further analysis. Besides, spectral averaging assumes 
that noise to the spectra will be minimized by mixing normal and noisy spectra. Despite 
requiring a low computational cost, spectral averaging is not recommended for reducing 
noise-like illumination effects. The accuracy of spectral averaging is highly dependent on 
the segmentation step. If the pixels used for averaging are contaminated by pixels not part 
of the sample, the resulting spectrum will not be able to represent the plant accurately. 

Spectral Smoothing. Spectral smoothing is a spectral correction method that mitigates 
the effect of spiky noise in the spectrum caused by the illumination effect. The variations 
of spectral smoothing are like moving average, first derivatives, second derivatives, and 
Savitsky-Golay (SG) polynomials filter (Fletcher & Turley, 2017). A smoothed spectrum 
has a higher Signal-to-Noise Ratio (SNR) as the noise carried by spiky bands is shared 
among the adjacent reflectance values. The computational power of spectral smoothing 
can be a few times higher depending on the derivative function used. Besides, the number 
of bands in the smoothed spectrum will be lesser than in the original spectrum.

Standard Normal Variate. The standard normal variate (SNV) normalization improves 
spectral averaging by retaining the spatial information of HS images. SNV normalization 
is inspired by chemometrics domains, whereby the formula models light scattering when 
light is reflected from the sample surface (Asaari et al., 2018; Vigneau et al., 2011). Firstly, 
the leaf surface was assumed to be a Lambertian surface where the reflectance intensity was 
similar in all directions. Therefore, the factor that greatly affected the reflectance received 
by the camera would be the leaf inclination. Coupled Lambert’s cosine law with inverse 
square law (Brownson, 2014). The following Equation 3 describes the SNV normalization 
computation:

𝑍𝑍 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠

  				    (3)

Where X is the original processed reflectance value across all bands for one pixel. Xmean and 
Xstd are the mean and standard deviation of X for all sample pixels, and Z is the normalized 
spectra. Note that SNV normalization is performed on the individual spectrum. Thus, no 
averaging of the spectrum is required.

Multiple Scattering Correction (MSC). The Multiple Scattering Correction (MSC) 
normalization is very similar to SNV normalization as both normalization methods were 
inspired by chemometrics. The only difference between SNV and MSC is that MSC 
normalization requires a reference spectrum. Most studies used the average spectrum 
as a reference spectrum as it is deemed free from noise. However, as mentioned above, 
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the average spectrum is very sensitive to outliers, which are non-sample spectra. Such 
characteristic causes MSC normalization to be more susceptible to noise. Even so, MSC 
normalization is still a popular correction method and has been applied in many HS studies 
due to its longer history compared to SNV normalization. For instance, Ren et al. (2020) 
employed it to correct the HS spectrum of black tea samples.

Variable Sorting Normalization. Variable sorting normalization (VSN) is a recent 
development for spectral correction by Mishra, Polder et al. (2020) and was used together 
with illumination correction methods, such as SNV, MSC, and Detrend. For example, when 
coupled with SNV, VSN estimated the weight for each wavelength in the computation 
of weight and standard deviation of the HS image. In another work, Fischler and Bolles 
(1987) performed estimation via a random sample consensus (RANSAC) algorithm, 
which calculated the dependency of each wavelength towards size effects (addition and 
multiplication offsets). With VSN, the illumination correction methods can model the 
illumination scattering with the least influence of chemical variables. 

Spectral Processing

Band Selection and Feature Extraction. Dense sampling due to small band intervals 
caused another redundancy of information. Not all values were useful for HS analysis, 
and retaining such data would impose a higher computational cost for the analytic process. 
Therefore, band selection and feature extraction were two important approaches to remove 
data that was insignificant to the analysis result.

In-band selection, the number of spectral bands was reduced by selecting a subset 
of the most discriminating features, which minimized the reconstruction error rate. The 
common techniques for performing band selection are analysis of variance Fisher (ANOVA 
F-test), random forest (RF), and sequential forward selection (SFS). The intensity values 
were grouped according to spectral bands in the ANOVA F-test. Each spectral band group 
consists of several values equivalent to the number of pixels of an image. Then, the same 
waveband group of images from different treatment groups was compared using ANOVA. 
Spectral bands with an F1 score lower than the preset threshold were considered a less 
significant spectral band and were removed. The ANOVA F-test had successfully been used 
as one of the pre-processing steps in identifying rice of different genotypes. Sabzi et al. 
(2021) detected excess nitrogen consumption in cucumbers (Wang et al., 2010). RF was 
used by Dinç and Aygün (2013), whereby a feature in a supervised self-training classifier 
formed each classification tree. Each classification tree had its voting result and was 
combined to form the final voting result. The classification result with the largest number 
of votes determined the final feature category. Even though RF was a promising classifier, 
it required a large amount of sampling data and features to prevent overfitting. The trained 
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RF was used on unlabeled inputs to apply RF as band selection. Certain features were 
selected, and all their values were shuffled for all the unlabeled inputs before the mean 
squared error (MSE) was computed. A large MSE indicated an important feature. In the case 
of SFS, classification was first performed separately for each feature. The feature which 
had the highest predictive accuracy was added to a subset. Several works have shown the 
feasibility of SFS in reducing the high-dimensional HS data prior to classification (Bradley 
et al., 2018).

In feature extraction, a new set of features was created by transforming the data into 
a new feature space. A common feature extraction technique used on HS data was based 
on a linear combination of image bands, such as in principle component analysis (PCA) 
and minimum noise fraction (MNF). As mentioned previously, the HS image consists of 
more than hundreds of bands, and this information can be redundant. Rodarmel and Shan 
(2002) stated that PCA works on the assumption that all neighboring bands of the HS vector 
highly correspond to each other. Therefore, PCA aimed to minimize the correlation between 
bands and obtain an optimum linear band combination that retained most information in the 
original data. The dataset obtained from PCA was known as principal components and was 
arranged by the amount of original information retained descending. In most situations, only 
the first few principal components would be used for further analysis. Figure 4 illustrates 
the PCA applied in data with 2 bands, also known as dimensions. In Figure 4, each data 
contained a value of Band 1 and Band 2, which can be represented as in Equation 4.

𝑚𝑚𝑖𝑖 = �𝑥𝑥𝑓𝑓1, 𝑥𝑥𝑓𝑓2� 				    (4)

Highly correlated data can be represented in a lesser number of bands. Figure 4 shows 
PCA Band 1, which retained most of the variations of the original data with just a single 

Figure 4. Illustration of PCA
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band. Any further classification processes 
applied in PCA Band 1 would obtain a 
similar result as applied in the original 
data, which consists of Band 1 and Band 
2. A more comprehensive mathematical 
derivation and historical review of PCA can 
be referred to in a study by Gonzalez and 
Woods (1993).  

Meanwhile, MNF is a 2-step linear 
transform denoising technique for HS 
images. The first step is known as ‘noise-
whitening,’ using principal components of 
the noise covariance matrix to decorrelate 
and rescale the noise in data. After the first 
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step, the resulting data would have noise with unit variance and minimum correlation 
between bands. The second step was conducted by applying PCA to the noise-whitened 
data. A previous study showed that MNF achieved a higher signal-to-noise Ratio (SNR) as 
compared to PCA for signal-dependent noise (Luo et al., 2016). However, the PCA result 
had higher SNR than MNF when dealing with Gaussian white noise. The mathematical 
steps of MNF were explained in detail in a study by Nielsen (2011). 

Spectral Modelling. Pre-processing data will be fed into machine learning models 
for either classification or regression approaches. Table 2 shows the spectral modeling 
methods, illumination correction, and feature extraction implemented in proximal 
HSI analysis. The classification approach aims to locate inputs into the correct class, 
respectively, while the regression approach predicts the output quantity for a given input 
value. Some of the most common classifiers, such as support vector machine (SVM) 
and decision tree (DT), whereas models like partial least square regression (PLSR), 
Gaussian process regression (GPR), and kernel ridge regression (KRR) were considered 
as regression approaches. 

Support Vector Machine (SVM). SVM classified data into two groups by forming a 
hyperplane within the high-dimensional data with the largest support vector margin. The 
hyperplane could be in different shapes by using SVM with kernel functions, such as 
polynomial, linear, and radial basis functions. Figure 5 shows an illustration of a linear 
SVM methodology. Data were classified into circle and triangle groups by a decision 
hyperplane between two support vectors. 

Moughal (2013) used SVM together with minimum noise fraction (MNF) to analyze 
HS data, and the overall accuracy was the highest among maximum likelihood (ML) and 

Figure 5. Illustration of SVM
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Where q is the linear transform of g in a 
window ωk centered at pixel k. αk and bk are 
linear coefficients and bias. After the image 
was filtered, SVM was adopted to classify 
the image pixel by pixel.
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Decision Tree (DT). As a comparison with other classifiers, DT was less computationally 
intensive and provided good readability. It adopted the top-down recursive strategy in 
which each leaf node denoted the classified class of a feature. The branch with the least 
conflict with the training data set decided on the input class. The correct classification rate 
(CCR) using Equation 6 to predict the performance of a DT model.

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑐𝑐
𝑁𝑁𝑡𝑡

× 100%                                 				    (6)

Where Nc is the number of correctly classified samples, while Nt is the total number of 
samples. Even though DT can be easily applied, it has a serious overfitting problem. In 
many cases, DT performed well with training datasets but the opposite in real datasets 
due to outliers.

Random Forest (RF). RF classification was an elaborate method of DT as it is built on 
multiple DTs. The initial step to build an RF classifier was to perform bootstrapping. A 
subset of dimensions from each bootstrapped dataset will be used to compute a DT. The 
final output of an RF was determined by aggregating the outputs of all DTs. Data that was 
not involved in bootstrapping, known as an out-of-bag dataset, will be used to validate the 
performance of an RF classifier. By using multiple DTs, the sensitivity towards outliers 
was reduced and thus provided better performance.

Partial Least Square Regression (PLSR). The working principle of PLSR was to reduce 
many measured collinear spectral variables to a small amount of non-correlated latent 
variables or factors (Darvishzadeh et al., 2008). As a comparison with spectra, the latent 
variables were assumed to be the relevant information in the measured spectra and were 
used to calculate dependent variables, such as biophysical and biochemical characteristics. 
The final aim of PLSR was to build a linear model, as shown in Equation 7, used to classify 
data into two groups.

Υ = Χ𝛽𝛽 + 𝜀𝜀  				    (7)

Where Y is a mean-centered vector of the dependent variable, X is a mean-centered 
matrix of independent variables (spectral bands in the study using HS image), β is a 
matrix of regression coefficients, and ε is a matrix of residuals. PLSR was like principal 
component regression (PCR), given that Equation 9 was used on latent variables of X. The 
difference was the decomposition of PLSR performed on both the spectra and responses 
simultaneously (Schlerf et al., 2003). A detailed description of PLSR can be reviewed by 
Geladi and Kowalski (1986). 



2834 Pertanika J. Sci. & Technol. 31 (6): 2823 - 2850 (2023)

Jian Wen Lin, Mohd Shahrimie Mohd Asaari, Haidi Ibrahim, Mohamad Khairi Ishak dan Abdul Sattar Din

Gaussian Process Regression (GPR). A joint multivariate normal distribution distributed 
the output values after GPR was applied. The mean vector of the joint distribution was 
generally assumed as zero vectors, and the covariance matrix was obtained using a 
covariance function defined over a pair of input values. Several works have successfully 
applied the GP regression to predict the biochemical characteristics from HS data (Arefi et 
al., 2021; Gewali & Monteiro, 2016). The details of the mathematical derivation of GPR 
were provided (Gewali et al., 2019).  

Kernel Ridge Regression (KRR). KRR extends a simple linear regression by substituting 
the covariance with a kernel function (Mateo-García et al., 2018). The advantage of 
adopting KRR was its simplicity, as the aim is to find a parameter value that minimizes 
the mean square error. Besides, KRR was normally used when the training data was less as 
the computational cost was expensive for computing KRR for large datasets. The response 
for input x is estimated using KRR, as shown in Equation 8. 
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 is an input 
domain and 

 

                    𝑓𝑓(𝑥𝑥) = ∑ 𝑘𝑘�𝑥𝑥𝑗𝑗 , 𝑥𝑥�𝛼𝛼𝑗𝑗𝑛𝑛 
 𝑗𝑗=1                            (8) 
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                    𝑓𝑓(𝑥𝑥) = ∑ 𝑘𝑘�𝑥𝑥𝑗𝑗 , 𝑥𝑥�𝛼𝛼𝑗𝑗𝑛𝑛 
 𝑗𝑗=1                            (8) 
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 is the solution of Equation 9.

 

                    𝑓𝑓(𝑥𝑥) = ∑ 𝑘𝑘�𝑥𝑥𝑗𝑗 , 𝑥𝑥�𝛼𝛼𝑗𝑗𝑛𝑛 
 𝑗𝑗=1                            (8) 

where given training data is (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)  ∈  𝜒𝜒 × 𝛾𝛾  , where 𝜒𝜒  ⊆  𝑅𝑅𝑑𝑑  is an input domain and 
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                         (𝜒𝜒𝑇𝑇𝜒𝜒  +  𝜆𝜆𝐼𝐼𝑛𝑛)𝛼𝛼  =  𝜒𝜒𝑇𝑇𝛾𝛾   			   (9) 

Where λ is the regularization parameter > 0, 

 

                    𝑓𝑓(𝑥𝑥) = ∑ 𝑘𝑘�𝑥𝑥𝑗𝑗 , 𝑥𝑥�𝛼𝛼𝑗𝑗𝑛𝑛 
 𝑗𝑗=1                            (8) 

where given training data is (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)  ∈  𝜒𝜒 × 𝛾𝛾  , where 𝜒𝜒  ⊆  𝑅𝑅𝑑𝑑  is an input domain and 

𝛾𝛾  ⊆  𝑅𝑅𝑑𝑑  is an output domain. 𝛼𝛼  =  (𝛼𝛼1  …  𝛼𝛼𝑛𝑛)𝑇𝑇 is the solution of Equation 9. 

                         (𝜒𝜒𝑇𝑇𝜒𝜒  +  𝜆𝜆𝐼𝐼𝑛𝑛)𝛼𝛼  =  𝜒𝜒𝑇𝑇𝛾𝛾    is the entries matrix, and 

 

                    𝑓𝑓(𝑥𝑥) = ∑ 𝑘𝑘�𝑥𝑥𝑗𝑗 , 𝑥𝑥�𝛼𝛼𝑗𝑗𝑛𝑛 
 𝑗𝑗=1                            (8) 

where given training data is (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)  ∈  𝜒𝜒 × 𝛾𝛾  , where 𝜒𝜒  ⊆  𝑅𝑅𝑑𝑑  is an input domain and 

𝛾𝛾  ⊆  𝑅𝑅𝑑𝑑  is an output domain. 𝛼𝛼  =  (𝛼𝛼1  …  𝛼𝛼𝑛𝑛)𝑇𝑇 is the solution of Equation 9. 

                         (𝜒𝜒𝑇𝑇𝜒𝜒  +  𝜆𝜆𝐼𝐼𝑛𝑛)𝛼𝛼  =  𝜒𝜒𝑇𝑇𝛾𝛾    is the vector 
responses. The KRR technique applied for the non-linear learning method for discrimination 
between healthy and stressed plants was demonstrated (Asaari et al., 2022). 

Spectral Angle Mapper (SAM) classifier. The Spectral Angle Mapper (SAM) is a supervised 
classification that treats every spectrum as an n-th dimension vector in space. The angle 
between two spectra is computed using Equation 10 (Rashmi et al., 2014) to determine 
their similarity, where a smaller angle represents a higher similarity between two spectra.

𝛼𝛼 = cos−1

⎝

⎜
⎜
⎛ ∑ 𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛

𝑖𝑖=1 𝑟𝑟𝑖𝑖

�∑ 𝑡𝑡𝑖𝑖2𝑛𝑛𝑛𝑛
𝑖𝑖=1 �∑ 𝑟𝑟𝑖𝑖2𝑛𝑛𝑛𝑛

𝑖𝑖=1
⎠

⎟
⎟
⎞

 		  (10)

Where nb is the number of bands, t is the spectrum vector, r is the reference spectrum 
vector, and α is the spectral angle. A distinct reference spectrum for each class is always 
required in HS analysis before SAM is applied.
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Table 2
List of illumination correction, feature extraction, and spectral modeling focus on proximal HSI analysis on crop

Illumination 
Correction Feature Extraction Spectral Modelling Authors

Average Not specified PLSR, PCR Liu et al., 2007
Not specified PLSR Ge et al., 2016

Pandey et al., 2017 
SNV ANOVA K-means, Computation of ED Asaari et al., 2018)

ANOVA SVM + K-means Asaari et al., 2019
Not specified PLSR Nguyen & Lee, 2006

Vigneau et al., 2011
Not specified ANN Sabzi et al., 2021

MSC PCA DT Ren et al., 2020
Spectral 
Smoothing  

Competitive Adaptive 
Reweighted Sampling 
(CARS)

PLSR Sun et al., 2021

Derivatives Not specified PLSR Huang & Apan, 2006
Fu et al., 2014

Spectral Angle Mapper (SAM) Leucker et al., 2016
RF Fletcher & Turley, 

2017
MSC + SNV PCA PLS-DA Manley et al., 2009
VSN + SNV Not specified K-means clustering Mishra, Polder et al., 

2020
MSC + Spectral 
Smoothing

Neighborhood Component 
Analysis (NCA), PLSR

GPR, Bagging Decision Tree 
(BDT), Lasso Regression

Arefi et al., 2021

Not specified PCA SVM, RF Nguyen et al., 2021
PCA RF, KNN Gao et al., 2018
CA, CARS PLSR Sun et al., 2018
ANOVA Computation of VIs Mahlein et al., 2010
Not specified SVM, least square SVM, MLP Moshou et al., 2014

UTILIZATION OF SPATIAL INFORMATION

Each pixel of the HS image was formed by a spectral vector, which consists of multiple 
bands. Undeniably, many plant traits can be observed by utilizing spectral information 
alone. However, spatial information should not be overlooked to explore the potential of 
HS images fully. The spatial information can be from the HS image or obtained from other 
sensors, commonly the depth sensor. Table 3 summarizes the research works that utilized 
spatial images in proximal HS analysis. 

Foreground-Background Segmentation

The purpose of foreground-background segmentation in HS images was to remove the 
pixels not part of the sample under investigation. This approach was used to remove 
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unwanted background by calculating the NDVI value of each pixel (Asaari et al., 2018; 
Behmann et al., 2014; Pandey et al., 2017). This method might not be efficient if the 
background consists of an object that reflected illumination within the NIR or red range.

The background removal performed by using NDVI could be improved by analyzing 
spatial information to eliminate the remaining pixels that were not part of the sample 
plant. Williams et al. (2017) eroded the HS image using a 3×3 cross-shaped structural 
element to remove stray and mixed pixels at the leaf’s edge after the NDVI segmentation 
step. The image erosion determined if a particular pixel belonged to the sample plant via 
its neighboring pixels. If most neighboring pixels were the plant’s pixel, the target pixel 
would be set to the plant pixel and vice versa. Besides, a graph theory that required a low 
computational power was also implemented to segmentize the sample from a background 
that reflected a similar intensity of VNIR illumination as a sample.

Chen et al. (2019) explored object segmentation using the HS lidar sensor system. Nine 
different materials were aimed to be segmented via 3D point clouds obtained using the lidar 
sensor. The obtained 3D data were processed using connected-component labeling (CCL), 
a point cloud segmentation method that did not require a seed point. It was initially used 
in binary digital images by isolating components that did not overlap spatially, whereby 
points in each component had similar properties. The same theory could be applied when 
segmenting objects in a 3D point cloud and sample plant from its background, which had 
different spectral properties.

Noise Reduction and Morphological Profile

Different kinds of noise can degrade the HS image quality. Huang et al. (2021) set input 
data within a certain range by comparing it with white and dark references to reduce the 
effect of noise. Kool et al. (2021) implemented morphological closing to remove noise 
before the classification. Morphological closing involved a dilation followed by erosion 
to remove gaps caused by noise. It allowed the noisy pixels to be corrected and used for 
consequent processing steps.

Morphological profile (MP) is obtained by opening and closing the original image. 
Small bright pixels could be eliminated by opening, while small dark pixels could be 
eliminated by closing. Different MPs could be obtained depending on the scale and 
structural element (SE) that came in different shapes like disk-shaped, linear-shaped, 
cross-shaped, and so on, depending on the shape that wishes to be removed. MPs were 
generated by exploring the spatial information of HS images (Liao et al., 2019; Villegas 
et al., 2017). The MPs were combined with the first few principal components (PCs) for 
further analysis. Both studies showed that the fusion of MPs and PCs performed better 
than just utilizing solely spectral information for analysis.



2839Pertanika J. Sci. & Technol. 31 (6): 2823 - 2850 (2023)

A Review of Hyperspectral Imaging for Plant Traits Study

Point Clouds for HS 3D Model

During image acquisition, the reflected illumination was not always towards the camera 
due to the inclined normal of the complex geometry of the plant. It caused an illumination 
effect as the reflected illumination might overlap before reaching the camera. In most 
studies utilizing only spectral data, the spectral information would be corrected with 
mathematical formulas, such as spectral averaging, standard normal variation (SNV), and 
variable sorting normalization (VSN), and were able to improve the analysis accuracy to a 
certain extent. However, modeling the scattering effect of illumination was dependent on 
the leaves’ inclination angle and precise estimation of the inclination angle of every leaf, 
whereby using spectral information alone was nearly impossible. 

One of the promising solutions for this issue was combining spatial and spectral 
information by using 3D point clouds of HS images. 3D point clouds were generated using 
different depth sensors and incorporated with HS information for analysis (Behmann et 
al., 2016; Huang et al., 2018; Villegas et al., 2017). The inclination angle of leaves could 
be computed with 3D models, reducing the illumination effect. The studies proved that 
the analysis accuracy was higher by fusing geometry information with the original HS 
information than by solely analyzing the spectral information. Even though incorporating 
3D models provided better analysis results, it did not come without disadvantages. One 
of the concerns when using this method was the additional requirement of a depth sensor. 
Besides, acquiring accurate 3D point clouds required precise calibration and more time.

Deep Learning for HS Image Classification

Deep learning utilized the spectral and spatial information of HS images and outperformed 
the conventional machine learning method in many situations. For instance, Yan et al. (2021) 
compared the convolutional neural network (CNN) with conventional machine learning 
methods like logistic regression (LR), standard vector machine (SVM), neural network 
(NN), and decision tree (DT) on 1D, 2D and 3D data extracted from HS images. The results 
showed that CNN had the highest accuracy when used on first derivative spectra and HS 
images to detect the existence of aphids in cotton. Whereas for RGB images (2D), CNN 
achieved the same accuracy as LR, which was also one of the highest of all five methods.

Deep learning usually refers to a deep neural network consisting of a recurrent neural 
network (RNN), CNN, and generative adversarial network (GAN). These methods were 
called ‘deep’ as data would be processed in many layers, each performing a different 
function. Amongst various deep neural networks, CNN is the most popular network for 
image and speech recognition due to its strength in extracting features from complex 
data. Even though CNN has shown great potential for complex data analysis, it is not 
completely free from limitations. One of the concerns when implementing CNN to study 
plant traits is the limited number of samples used for training (Paoletti et al., 2018). 
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Besides, the limited samples coupled with high data dimensionality also led to another 
problem, commonly referred to as the Hughes phenomenon, also known as the curse of 
dimensionality (Khodadadzadeh et al., 2014). 

In recent studies, augmented data to tackle a limited number of samples (Z. Wang et al., 
2018; Zhao et al., 2021). Techniques for data augmentation include flipping horizontally 
and vertically and randomly rotating the image quarterly. Besides, Nagasubramanian et al. 
(2019) cropped the original HS images spatially random into fixed smaller sample sizes to 
increase the number of training samples. The augmented data generated by these techniques 
would appear as different inputs to the neural network, as deep learning is a spectral-spatial-
based analysis method. As shown in Figure 6, the conventional architecture of CNN can 
be classified into two parts: the feature learning layer and the classification layer. Feature 
learning layers consist of convolutional layers, pooling layers, batch normalization, and 
activation functions. On the other hand, the classification layer is formed by fully connected 
layers.

Figure 6. Conventional architecture of CNN of HSI

When pre-processing data is fed into CNN for training, it initially goes through the 
convolutional layer. If the data is an RGB image, a 2D convolutional kernel would be 
used to convolute the image so that features like edges, vertices, lines, and so on would 
be extracted. For the case of HS images, a 3D convolutional kernel would be used to 
extract spectral-spatial features. The work presented by Nagasubramanian et al. (2019) 
and Nguyen et al. (2021) used 3×3×3 used 3×3×3 and 3×3×16 pixels kernels, respectively, 
in all five methods and two convolutional layers. The size of the kernel could affect the 
model’s accuracy. Larger kernels tend to capture high-resolution patterns with the downside 
of more parameters and computational power. However, the model performance was not 
proportional to kernel size. The accuracy of the model would drop when the kernel size 
exceeds a certain threshold. Tan and Le (2020) suggested mixing large and small kernels 
to capture high- and low-resolution patterns.
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Each convolutional layer is normally followed by a batch normalization layer and 
a pooling layer (Nguyen et al., 2021; Yan et al., 2021, 2019). The purpose of batch 
normalization is to reduce internal shift, which is the change in network activation 
distributions due to network parameters change during training (Ioffe & Szegedy, 2015). 
By doing this, the issue of unstable gradient can be addressed, and the learning rate can 
be increased. The layer that ensues is the pooling layer, which helps prevent overfitting 
and reduce the complexity of the network, thus lowering the computational cost. Types of 
pooling layers are max pooling and average pooling. When the pooling layer is applied to 
3D data, the height and width are reduced, but the depth remains unchanged.

Since the output value from every layer is not bounded, a large value might lead to 
computational issues for the model as the layer gets deeper. The activation function is 
applied to set the input within a certain range after every layer, normally after the pooling 
layer in CNN. Besides, the activation function adds non-linearity to a neural network. For 
example, Equation 11 shows layers of functions stacked within each other. This forms non-
linearity, which allows the model to learn patterns from a complex dataset. fn(x) can be 
any non-linear activation function like rectified linear unit (ReLU), Sigmoid, or SoftMax 
function, represented in Equations 12, 13, and 14, respectively. ReLU is commonly used 
at the current stage as it requires the least computational costs.

		  (11)

				    (12)

				    (13)

				    (14)

Figure 7. Conventional architecture of fully connected layer (Sun et al., 2019)
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The convolutional layer serves as a feature extraction function to work with other ML 
methods, as demonstrated by Nguyen et al. (2021). In many studies, data after convolutional 
layers are flattened to a 1D vector and fed into a fully connected layer, also known as a 
dense layer, in which inputs and outputs are related via learnable weight. Figure 7 shows 
the conventional architecture with 2 hidden and 2 dropout layers. The dropout layer helps 
to prevent model overfitting and is used only during training. However, information loss 
might occur when the parameter of the dropout layer is not correctly set.

Table 3
List of studies that utilize spatial images in close-range HSI analysis

Spatial Information 
Use Case

Spectrum 
Wavelength

Wavelength 
Interval Research Subject Authors

Combine 3D models 
with HS images to 
remove geometry-
related effects in HS 
analysis

400–2500 nm Not 
specified

Sugar beets Behmann et al., 2016

400–1000 nm 7 nm Aagrow soybean Huang et al., 2018
380–2200 nm 4.69 nm Tomato palnts Sun et al., 2019

Analyse 3D HS image 
using CNN, which 
preserves spectral and 
spatial information

376–1044 nm 5 nm Cotton leaves Yan et al., 2021
328.81–
1113.54 nm

0.78 nm Blueberry Wang, Hu et al., 
2018

400–1000 nm 2.5 nm Glycine max (L.) Merr. 
soybean

Nagasubramanian et 
al., 2019

397–1004 nm 3 nm Grapevines Nguyen et al., 2021
Compute mean spectral 
reflectance from 
spatially selected ROIs 

395–885 nm 2.05 nm Corn seedlings Yang et al., 2019
450–950 nm 3.97 nm Cotton Zhao et al., 2021

Morphological process 
to remove noise 
spatially

467–900 nm 2.87 nm Potato plants Kool et al., 2021
400–2506nm 1.23 nm and 

5.79 nm for 
below and 
above 895, 
respectively

Gien Moy and Latham 
raspberries

Williams et al., 2017

Generate MPs to 
support processes like 
noise removal and 
combination with PCs

364–1031 nm 4.5 nm Banana leaves Liao et al., 2019
364–1031 nm 4.5 nm Banana leaves Villegas et al., 2017

Classification of objects 
with different material 
properties in 3D data via 
CCL

500–820 nm 9.69 nm Peperomia tetraphylla 
plant, Sansevieria 
Trifasciata plant, and 
other non-living objects

Chen et al., 2019

REMAINING TECHNICAL CHALLENGES

Even though HS image carries a large amount of information, researchers still faced many 
challenges during the studies. Each stage poses certain difficulties that need to be tackled 
before a study is carried out. For instance, the inconsistent natural light makes outdoor data 
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acquisition more difficult. Therefore, factors like weather forecasts must be considered 
prior to data acquisition.

Even though the HS camera is decreasing, it is still costly compared to imaging devices 
like thermal and RGB because the HS camera is still mainly used for research purposes, 
and there are fewer providers for such cameras. It makes HS a niche device that can hardly 
be obtained.

Every pixel of an HS image is a vector of spectra information. Unlike RGB images 
with three bands or multispectral images with 10-20 bands, the pixel vector of HS images 
can be hundreds of elements long. It leads to costly storage for HS images. Besides, 
remote data transfer for such a huge amount of data is challenging. One possible solution 
is to use a compression algorithm where no data loss occurs when compressed data is 
extracted.

One of the challenges with deep learning adoption for HS analysis is that the amount 
of training dataset is still insufficient in many studies because the public HS dataset 
is fewer, and the datasets required are specific, depending on the subject studied. The 
common approach is via data augmentation, whereby the available training dataset 
is rotated, scaled, cropped, and added noise to assemble the subject under different 
conditions.

CONCLUSION

HS image carries much information both spectrally and spatially. In many cases, spatial 
information is used only in pre-processing steps like segmentation and noise reduction. 
For model training, the use case of HS spectral-spatial information is demonstrated by 
deep learning. In many studies, CNN showed better performance as compared to the 
conventional pixel-based analysis, which treats every pixel independently. Therefore, deep 
learning methods utilizing spectral and spatial information should be the research focus in 
future HSI analysis to derive full benefits from HS information.

Besides, one piece of information that can hardly be explored and utilized from 
HS images is the pixel depth. The depth information is usually provided using an 
external depth sensor. Currently, most studies about neural network analysis on 
proximal HSI do not include in-depth information. Hence, there is potential to integrate 
depth information with HS images trained by neural networks to improve accuracy in 
studying plant traits.
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